python - Convert structured array to regular NumPy array -
the answer obvious think, don't see @ moment.
how can convert record array regular ndarray?
suppose have following simple structured array:
x = np.array([(1.0, 4.0,), (2.0, -1.0)], dtype=[('f0', '<f8'), ('f1', '<f8')])
then want convert to:
array([[ 1., 4.], [ 2., -1.]])
i tried asarray
, astype
, didn't work.
update (solved: float32 (f4) instead of float64 (f8))
ok, tried solution of robert (x.view(np.float64).reshape(x.shape + (-1,))
), , simple array works perfectly. array wanted convert gives strange outcome:
data = np.array([ (0.014793682843446732, 0.006681123282760382, 0.0, 0.0, 0.0, 0.0008984912419691682, 0.0, 0.013475529849529266, 0.0, 0.0), (0.014793682843446732, 0.006681123282760382, 0.0, 0.0, 0.0, 0.0008984912419691682, 0.0, 0.013475529849529266, 0.0, 0.0), (0.014776384457945824, 0.006656022742390633, 0.0, 0.0, 0.0, 0.0008901208057068288, 0.0, 0.013350814580917358, 0.0, 0.0), (0.011928378604352474, 0.002819152781739831, 0.0, 0.0, 0.0, 0.0012627150863409042, 0.0, 0.018906937912106514, 0.0, 0.0), (0.011928378604352474, 0.002819152781739831, 0.0, 0.0, 0.0, 0.001259754877537489, 0.0, 0.01886274479329586, 0.0, 0.0), (0.011969991959631443, 0.0028706740122288465, 0.0, 0.0, 0.0, 0.0007433745195157826, 0.0, 0.011164642870426178, 0.0, 0.0)], dtype=[('a_soil', '<f4'), ('b_soil', '<f4'), ('ea_v', '<f4'), ('kcc', '<f4'), ('koc', '<f4'), ('lmax', '<f4'), ('malfarquhar', '<f4'), ('mrn', '<f4'), ('tcc', '<f4'), ('vcmax_3', '<f4')])
and then:
data_array = data.view(np.float).reshape(data.shape + (-1,))
gives:
in [8]: data_array out[8]: array([[ 2.28080997e-20, 0.00000000e+00, 2.78023241e-27, 6.24133580e-18, 0.00000000e+00], [ 2.28080997e-20, 0.00000000e+00, 2.78023241e-27, 6.24133580e-18, 0.00000000e+00], [ 2.21114197e-20, 0.00000000e+00, 2.55866881e-27, 5.79825816e-18, 0.00000000e+00], [ 2.04776835e-23, 0.00000000e+00, 3.47457730e-26, 9.32782857e-17, 0.00000000e+00], [ 2.04776835e-23, 0.00000000e+00, 3.41189244e-26, 9.20222417e-17, 0.00000000e+00], [ 2.32706550e-23, 0.00000000e+00, 4.76375305e-28, 1.24257748e-18, 0.00000000e+00]])
wich array other numbers , shape. did wrong?
[~] |5> x = np.array([(1.0, 4.0,), (2.0, -1.0)], dtype=[('f0', '<f8'), ('f1', '<f8')]) [~] |6> x.view(np.float64).reshape(x.shape + (-1,)) array([[ 1., 4.], [ 2., -1.]])
Comments
Post a Comment